N95-10570

Future Enhancements to Ground-Based Microburst Detection.

M. Matthews, S. Campbell,
and T. Dasey,
Massachusetts Institute of Technology

5th (and Final) Combined Manufacturers' and Technologists' Airborne Wind Shear Review Meeting September 28–30, 1993 Hampton, Virginia

"FUTURE ENHANCEMENTS TO GROUND BASED MICROBURST DETECTION"*

Steven D. Campbell, Michael P. Matthews and Timothy J. Dasey

Lincoln Laboratory

Massachusetts Institute of Technology
Lexington, Massachusetts

Telephone: 617/981–3386, E-mail: sdc@ll.mit.edu

This talk will present the results of the Cockpit Weather Information (CWI) program at M.I.T. Lincoln Laboratory. The CWI program has been funded through NASA Langley Research Center by the joint NASA/FAA Integrated Airborne Wind Shear program for the past four years. During this time, over 120 microburst penetrations by research aircraft have been conducted under Terminal Doppler Weather Radar (TDWR) testbed radar surveillance at Orlando, FL. The results of these in–situ measurements have been compared with ground–based detection methods.

Several valuable insights were gained from this research activity. First, it was found that the current TDWR microburst shapes do not permit accurate characterization of microburst hazard in terms of the F factor hazard index, because they are based on loss value rather than shear. Second, it was found that the horizontal component of the F factor can be accurately estimated from shear, provided compensation is made for the dependence of outflow strength on altitude. Third, it was found that a simple continuity assumption for estimating the vertical component of the F factor yielded poor results. However, further research has shown that downdraft strength is correlated with features aloft detected by the TDWR radar scan strategy.

The outcome of the CWI program is to move from the loss-based wind shear detection algorithm used in the TDWR to a shear-based detection scheme as proposed in the Integrated Terminal Weather System (ITWS). The ITWS Microburst Detection algorithm being developed at Lincoln Laboratory uses a one kilometer radial shearmap to find regions of shear at various thresholds related to F factor hazard. The ITWS runway alerting strategy is planned to incorporate altitude compensation for outflow strength estimates. Finally, work is currently in progress to incorporate outputs from the ITWS Downdraft Detection algorithm to estimate the vertical F factor component.

^{*} The work described here was sponsored by the National Aeronautics and Space Administration under Air Force Contract No.F19628-90-C-002. The United States Government assumes no liability for its content or use thereof.

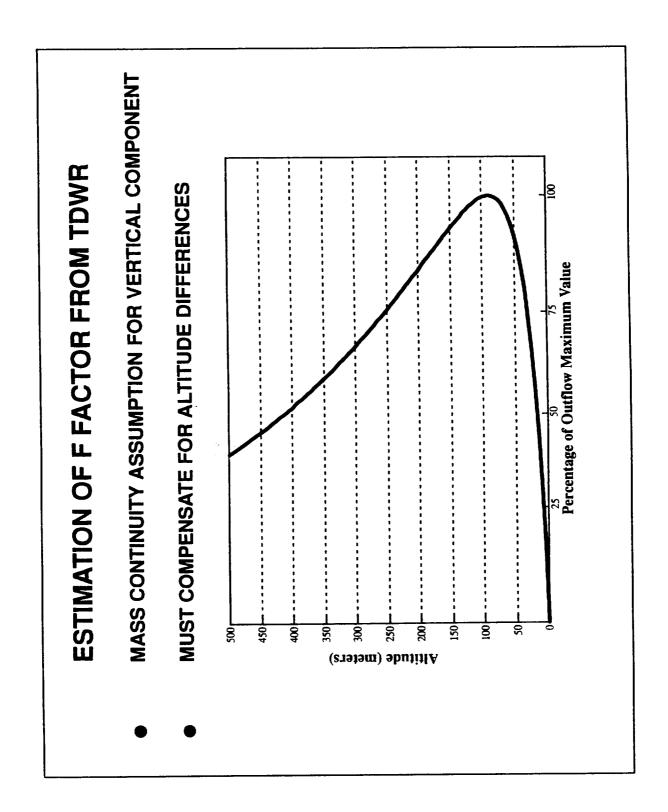
References:

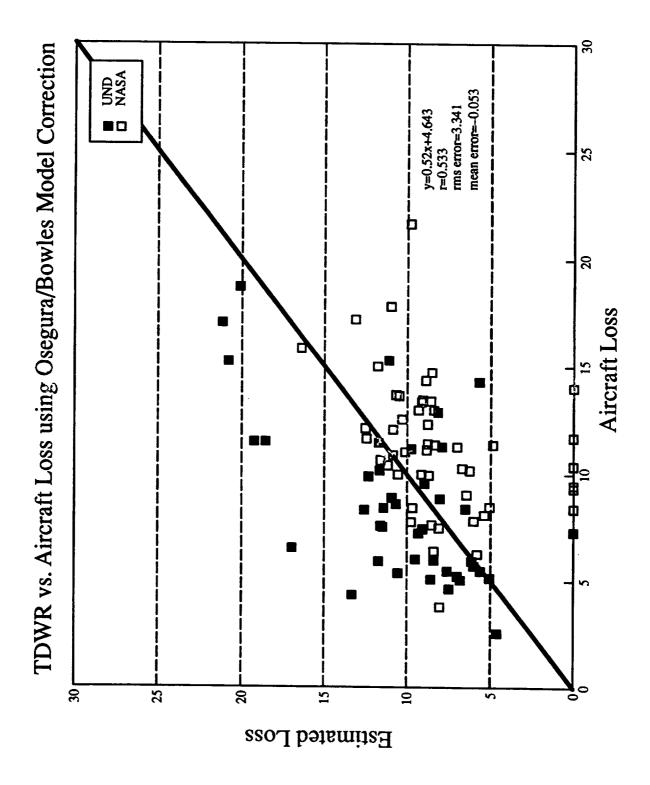
- 1. Bowles, R. L.: "Reducing Windshear Risk Through Airborne Systems Technology", 17th Congress on the Aeronautical Sciences, Stockholm, Sweden, Sep. 9–14, 1990
- 2. Dasey, T. J.: "A Shear Based Microburst Detection Algorithm for the Integrated Terminal Weather System (ITWS)", 26th International Conference on Radar Meteorology, Norman, Oklahoma, May 24–28, 1993
- 3. Matthews, M. P. and A. J. Berke. "Estimating a Wind Shear Hazard Index from Ground Based Terminal Doppler Radar", 26th International Conference on Radar Meteorology, Norman, Oklahoma, May 24–28, 1993

FUTURE ENHANCEMENTS TO GROUND BASED MICROBURST DETECTION

STEVEN D. CAMPBELL, MICHAEL P. MATTHEWS, AND TIMOTHY J. DASEY MIT LINCOLN LABORATORY

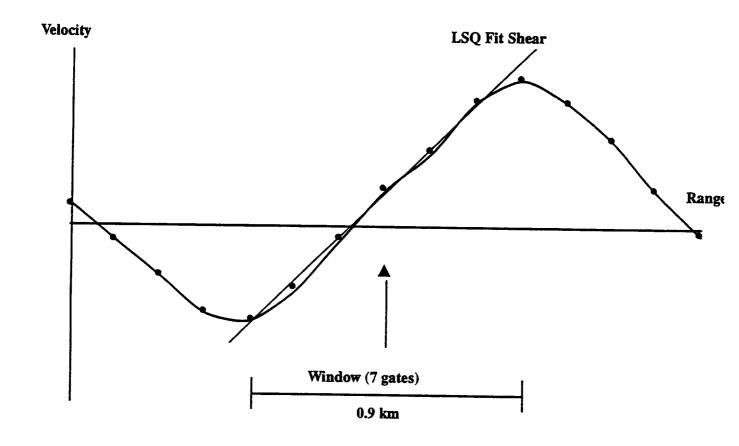
5TH (AND FINAL) COMBINED MANUFACTURERS' ANDTECHNOLOGISTS' HAMPTON, VIRGINIA SEPTEMBER 28-30, 1993 AIRBORNE WIND SHEAR REVIEW MEETING

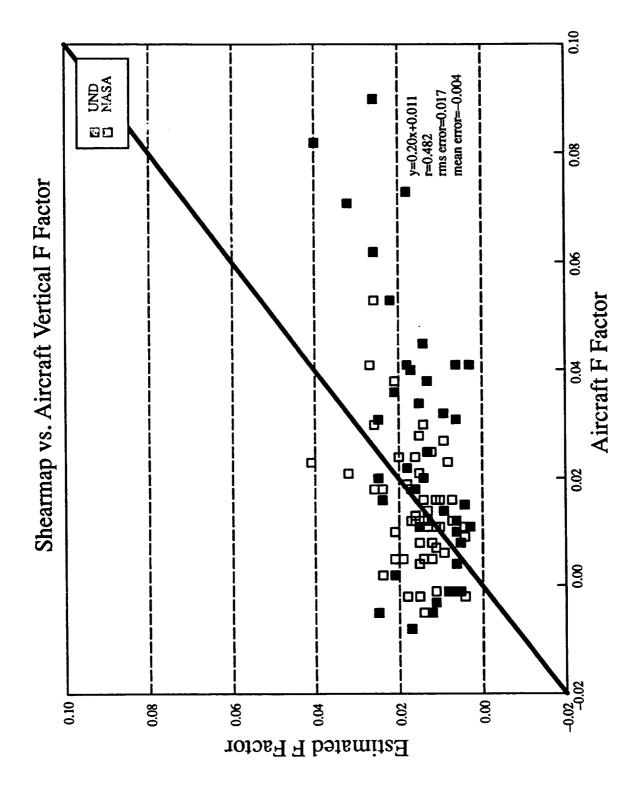

- **CWI PROGRAM OVERVIEW**
- **ESTIMATION OF F FACTOR FROM TDWR**
- NEW MICROBURST DETECTION ALGORITHM
- SUMMARY


CWI PROGRAM OVERVIEW

TWO MAIN OBJECTIVES OF CWI PROGRAM:

- 1) PROVIDE SUPPORT FOR MICROBURST PENETRATIONS IN ORLANDO
- DATA LINKED TDWR MICROBURST SHAPES TO THE COCKPIT
- PROVIDED VERBAL COMMUNICATIONS ABOUT WEATHER
- 2) COMPUTE THE F FACTOR FROM GROUND BASED DOPPLER RADAR
- OVER 120 MICROBURST PENETRATIONS IN DATABASE
- USED NASA/LINCOLN KNOWLEDGE TO ESTIMATE F FACTOR




TDWR Shape vs. Aircraft Total F Factor using Osegura/Bowles Model Correction 9.7 0.22 UND NASA Collins Westinghouse тел епот=0.0.020 y=0.43x+0.065 0.20 rms error=0.041 **8**04+ 0.18 0.16 **4** 0 Aircraft F Factor **₽** 0 0.02 0.02 **5**.0 0.10 0.08 0.30 0.12 80.0 0.22 0.16 0.24 0.18 0.14 Estimated F Factor

SHEAR COMPUTATION USING LEAST-SQUARES FIT

Shearmap vs. Aircraft Total F Factor using Osegura/Bowles Model Correction 0.22 mean error=-0.008 UND NASA Collins Westinghouse y=0.45x+0.034 r=0.460 rms error=0.031 0.20 **=**04+ 0.18 0.16 Aircraft F Factor 0.12 0.10 4 밉 0.08 0.0 9.0 0.02 0.02 0.20 Estimated F Factor 0.22 90.0 9.0 0.24 0.18

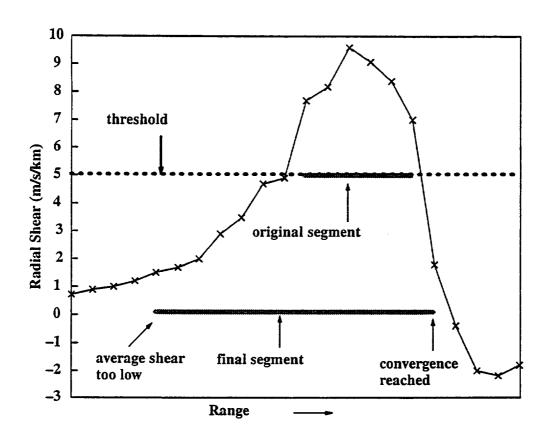
Shearmap vs. Aircraft Horizontal F Factor using Osegura/Bowles Model Correction 20 NASA 0.22 mean errors 0.002 y=0.53x+0.025 r=0.535 rms error=0.024 0.20 0.18 Aircraft F Factor 8 800 0.02 0.20 0.22 0.18 0.16 0.14 0.12 0.02 0.10 0.08 90.0 9. 8 Estimated F Factor

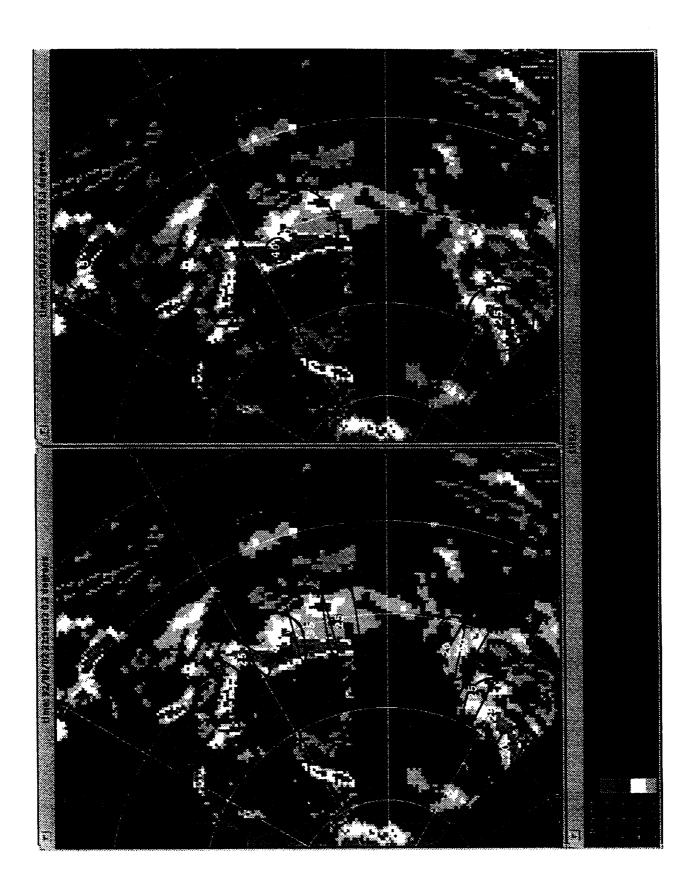
ESTIMATION OF F FACTOR FROM TDWR

ERROR IN VERTICAL F FACTOR ESTIMATION

Error in Vertical F Factor Estimation	Reflectivity Core and Convergence	Reflectivity Core	No Features
Fe < -0.010	9	2	0
-0.010 < Fe < -0.005	3	3	7
-0.005 < Fe < 0.005	S	2	11
0.005 < Fe < 0.010	0	4	4
0.010 < Fe	0	0	10

NEW MICROBURST DETECTION ALGORITHM


MOTIVATIONS FOR ITWS MICROBURST DETECTION


- TERMINOLOGY WITH AIRBORNE WIND SHEAR DETECTION ASSIST IN PROVIDING CONSISTENT WARNINGS AND SYSTEMS
- APPLY RECENT KNOWLEDGE OF AIRCRAFT HAZARD FROM INSTRUMENTED FLIGHT PENETRATIONS
- CONSISTENT INPUT FOR MICROBURST TREND

ALERT COMPARISON

AIRBORNE	ALERTS BASED ON ENERGY LOSS RATE (F-FACTOR)	ONE ALERT LEVEL:	ALERT" FOR F-FACTOR >	0.105		GRAPHICAL ALERT	NO INTENSITY PROVIDED
TDWR	ALERTS BASED ON HEADWIND TO TAILWIND WIND CHANGES	TWO ALERT LEVELS:	(WSA)" FOR EXPECTED	LOSS BETWEEN 15 AND 30 KNOTS	"MICROBURST ALERT (MBA)" FOR EXPECTED LOSS > 30 KNOTS	TEXT BASED ALERT	FLIGHT PATH INTENSITY PROVIDED

SEGMENT FORMATION

CONCLUSIONS

- TDWR MICROBURST ALGORITHM
- ACCURATELY REPORTS THE LOSS
- OVERESTIMATES F FACTOR HAZARD
- NASA LANGELY DEVELOPED SHEARMAP
- PROVIDES A BETTER ESTIMATE OF HAZARD
- MUST CORRECT FOR ALTITUDE
- NEED TO IMPROVE VERTICAL F FACTOR ESTIMATION
- ITWS MICROBURST ALGORITHM
- USES AIRBORNE WIND SHEAR PROGRAM TECHNOLOGY
- PROVED A BETTER ESTIMATE OF F FACTOR